Exam Seat No:_____

Enrollment No:_____

C.U.SHAH UNIVERSITY WADHWAN CITY

L7/1/20 ions:-		Marks :	70
-		ns of both sections in same answer book / Supplementary.	
		le calculator & any other electronic instrument is prohibited. on main answer Book are strictly to be obeyed.	
		& figures (If necessary) at right places.	
		Perfect data if needed.	
		SECTION-I	
Q-1	(a)	With neat sketch show the surface texture and surface layers.	02
χ	(b)	Write the limitations of Bowden and Tabor's theory of simple adhesion.	02
	(c)	Enlist four desirable properties of lubricant.	02
	(d)	Define 'absolute viscosity'. Also give its two different units.	01
Q-2	(a)	Discuss in detail different criteria for selection of Lubricants.	05
	(b)	Give the role of Additives in lubricants. Also explain various types of	05
		additives generally used according to their functions.	
	(c)	Explain duty and responsibilities of 'Tribologist' working in xyz	04
		manufacturing industry.	
~ ^		OR	o -
Q-2	(a)	Draw bearing characteristic number with its regimes and give your	05
		comments. Also explain bearing modulus and its varies relation with	
	(1_{1})	bearing characteristic number.	05
	(b)	Explain in brief following theory of friction.	05
		1. Coulomb's theory 2. Tomlinson's theory	
	(c)	2. Tomlinson's theory State the lows for volume of wear.	04
	(0)	State the lows for volume of wear.	04
Q-3	(a)	Write disadvantages of Mechanical Stylus method for surface roughness	07
ζ-	()	measurement. Explain with neat sketch 'Laser Method' for measurement	
		of surface roughness.	
	(b)	Prove that total volume of wear due to adhesion and abrasion is given	07
		by, $V = \left(\frac{K_{ad}}{3} + K_{ab}\right) \bullet \frac{W}{H}L$, where K_{ad} and K_{ab} are the wear coefficient	
		for adhesive and abrasive wear respectively, W is the load, L is the	
		sliding distance and H is the hardness of the softer material.	
		OR	
Q-3	(a)	Prove that the co-efficient of friction during sliding is	07
		$\mu_{sld} = \frac{\tau}{H} + \frac{2}{\pi} \tan \theta$, where $\tau =$ shear strength, H = hardness and $\theta =$	
		$\mu_{sld} = H^{-1} \pi^{-1}$ and , where t^{-1} shear strength, H^{-1} hardness and 0^{-1}	
		asperity angle.	
		aspenty angle.	

Page **1** of **3**

SECTION-II

		SECTION-II	
Q-4	(a)	Explain the basic principal of EHD lubrication.	02
	(b)	Write Hertz's equations used to determine the half contact length for,	02
		1. Spherical contact	
		2. Cylindrical contact	
	(c)	Explain the basic need of endurance testing of rolling element bearing.	02
	(d)	Give only two applications of sliding contact bearing and rolling contact	01
	. ,	bearing.	
Q-5	(a)	Write short note on – Slider bearings.	05
	(b)	Calculate the power loss for a Petroff bearing 80 mm diameter and 80	05
		mm long. The radial clearance is 0.04 mm and shaft speed is 900 rpm. A	
		SAE 10 oil is used, with mean temperature of 80 °C. Take dynamic	
		viscosity of oil at this temperature as 8 cP.	
	(c)	Give difference between hydrodynamic and hydrostatic journal bearing.	04
		OR	
Q-5	(a)	State the assumptions made while deriving,	05
-		1. Petroff's equation and	
		2. Reynold's equation	
		for hydrodynamic journal bearing.	
	(b)	Explain in details the major types of rolling element bearing failure.	05
	(c)	Explain Raimondi and Boyd method used for the design and analysis of	04
		hydrodynamic journal bearings.	
		Strand BHART	
Q-6	(a)	The 2206 cylindrical roller bearing supports a radial load of 20090 N.	07
-		Determine the loading at each roller location and the extent of the load	

zone. Use following data for 2206 bearing.

Roller diameter = 7.5 mm

Length of roller = 12 mm

Number of rollers = 13

Diametral clearance = 0.041 mm

Take reference of below table to determine the value of load distribution integral.

E	$J_r(\in)$
0	1/Z
0.1	0.1268
0.2	0.1737
0.3	0.2055
0.4	0.2286
0.5	0.2453
0.6	0.2568
0.7	0.2636

(b) Derive the Reynold's equation in two dimensional flows for 07 hydrodynamic lubrication.

OR

- Q-6 (a) A full journal bearing is rotating at 1200 rpm, and supporting a load of 07 6.5 kN. The shaft diameter is 60 mm and bearing diameter is 60.09 mm.
 1/d ratio is 1. If a minimum film thickness of 0.009 mm is to be maintained, find
 - 1. required viscosity of oil,
 - 2. amount of oil flow rate through the bearing,
 - 3. power lost in friction,
 - 4. temperature rise in oil.

ε	$\frac{h_o}{c_r}$	S	φ	$\frac{r}{c_{\ell}}f$	q rc,n_L	$\frac{q_s}{q}$	<u>γ.cΔt</u> , p	p p _{mm}
0.6	0.4	0.121	50.58	3.22	4.33	0.680	14.2	0.415
0.8	0.2	0.0446	36.24	1.70	4.62	0.842	8.00	0.313
0.9	0.1	0.0188	26.45	1.05	4.74	0.919	5.16	0.247

(b) Derive the equation to evaluate the load carrying capacity of Hydrostatic 07 step bearing. Also draw the pressure distribution diagram within annular ring.

